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ABSTRACT
Partially accelerated life tests are very important in life testing experiments because
it saves the testing time a lot of manpower, material sources and money. Partially
accelerated life tests are used when the data obtained from accelerated life tests
cannot be extrapolated to usual use conditions. In this paper, step stress-partially
accelerated life test is discussed based on Type II censored samples when the lifetime
of items under usual use condition has Topp Leone-inverted Kumaraswamy distri-
bution. The maximum likelihood estimators for the unknown parameters and the
acceleration factor are obtained. Numerical study and some interesting comparisons
are presented to illustrate the theoretical results. Also, two real data sets are applied
to confirm the applicability in real life.

KEYWORDS
Topp Leone-inverted Kumaraswamy distribution; censored samples; asymptotic
Fisher information matrix; step stress-partially accelerated life test.

1. Introduction

Today’s increasing market competition and higher customer expectations are driving
manufacturers to design and produce highly reliable products. It is important to assess
and estimate the reliability of a product during the design and development stage
because the time-to-market is getting shorter and shorter. Also, manufacturing designs
are improving continuously due to advancement in technology; therefore, it is becoming
more and more difficult to obtain information about lifetime of products or materials
with high reliability at the time of testing under usual conditions. In such problems,
accelerated life testing (ALT) or partially ALT (PALT) are preferred to be used in
manufacturing industries to obtain enough failure data in a short period of time and
necessary to study its relationship with external stress variables. Such testing could
save much time, manpower, material sources and money.

The major assumption in ALT is that the mathematical model relating the life-
time of the unit and the stress are known or can be assumed. In some cases, such life
stress relationships are not known and cannot be assumed i.e., ALT data cannot be
extrapolated to usual use condition. So, in such cases, PALT is a more suitable test
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to be performed for which tested units are subjected to both usual and accelerated
conditions. Chernoff (1962) and Bessler et al. (1962) introduced and studied the con-
cept of ALT. Stress can be applied in different ways as constant stress, step stress and
progressive stress among others.

In step stress-ALT loading, a specimen is subjected to successively higher levels of
stress. A specimen is first subjected to a specified constant stress for a specified length
of time. If it does not fail, it is subjected to a higher stress level for a specified time. The
stress on a specimen is thus increased step by step until it fails. Usually, all specimens
go through the same specified pattern of stress level saved test times. For more details
about step stress-ALT [see Jian-Ping and Xin-Min (2005), Wang (2006), Balakrishnan
and Han (2008), Wang (2010), Rezk et al. (2014), Hakamipour and Rezaei (2017) and
Mohie El-Din et al. ( 2021)].

In a step stress-PALT (SS-PALT) a tested unit is first run at usual use condition and,
if it does not fail for a specified time or number of failures, then it is run at accelerated
use condition until failure occurs or the observation is censored. The objective of such
experiment is to collect more failure data in a limited time without necessarily using a
high stress to all test units. Some references in the field of Bayesian and non-Bayesian
estimation based on SS-PALT under Type I, Type II and Type II progressive censoring
include Abdel-Hamid and AL-Hussaini (2008), Ismail and Aly (2009), Ismail (2011),
Shi et al. (2016), El-Dessouky (2017), Mahmoud et al. (2018), Aljohani and Alfar
(2020).

This paper is organized as follows: in Section 2, a description of the model, the
basic assumptions and test procedure are presented. The maximum likelihood (ML)
estimators (point and interval) for the parameters and the acceleration factor for SS-
PALT based on Type II censoring are derived in Section 3. Numerical illustration is
given in Section 4. Finally, some general conclusions are introduced in Section 5.

2. Model Description and Basic Assumptions

In this section, the model description is presented in Subsection 2.1, the basic assump-
tions and test procedure are given in Subsection 2.2.

2.1. Model description

Behairy et al. (2020) introduced Topp Leone-inverted Kumaraswamy (TL-IK)
distribution as a composite distribution of the TL(θ) and IK(a, b) distributions. It
is denoted by TL-IK (a, b, θ), its cumulative distribution function (cdf) and probability
density function (pdf) are given, respectively, by

F (x;ϑ) = [φ(a)]θb
[
2− (φ(a))b

]θ
, 0 < x < ∞; (ϑ > 0) , (1)

where

φ (a) = 1− (1 + x)−a, ϑ = (a, b, θ)′, (2)

the pdf corresponding to (1) is given by
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f (x;ϑ) = 2abθ(1 + x)−(a+1)[φ(a)]θb−1
[
1− (φ(a))b

] [
2− (φ(a))b

]θ−1
,

0 < x < ∞; (ϑ > 0) ,
(3)

where a, b and θ are shape parameters.
The reliability function (rf) and hazard rate function (hrf) are given, respectively, by:

R (x0;ϑ) = P (X ≥ x0) = 1− [φ (a)]θb
[
2− (φ (a))b

]θ
, 0 < x0 < ∞; (ϑ > 0) , (4)

and

h (x0;ϑ) =
f(x0)

1− F (x0)
=

2abθ(1 + x0)
−(a+1)[φ(a)]θb−1

[
1− (φ(a))b

] [
2− (φ(a))b

]θ−1

1− [φ(a)]θb
[
2− (φ(a))b

]θ ,

0 < x0 < ∞; (ϑ > 0) .

(5)

Behairy et al. (2020) showed that the TL-IK (a, b, θ) distribution contains some
special well-known distributions in lifetime, such as the TL-Lomax (Pareto Type
II), the TL-log-logistic (Fisk), the Lomax and the log-logistic (Fisk) distributions.
They derived some transformed distributions such as the TL-exponentiated Weibull,
TL-exponentiated Burr Type XII, TL-Kumaraswamy Dagum and TL-Kumaraswamy-
inverse Weibull, among several others. They studied the properties of this distribution,
which include the stress-strength reliability, moments, moment generating and quantile
functions of the TL-IK distribution. Also, they derived the ML estimators, asymptotic
variances and covariance matrix (AVCM) of the ML estimators and asymptotic con-
fidence intervals (ACIs) for the parameters, also they obtained the ML two-sample
predictor for the future observation based on Type-II censored data. Behairy et al.
(2019) introduced ML estimators and ML prediction of constant stress-PALT based
on Type II censored sampling from TL-IK distribution. Also, AL-Dayian et al. (2021)
presented Bayesian estimation and prediction of constant stress-PALT based on Type
II censored sampling from TL-IK distribution.

2.2. Basic assumptions and test procedure

• Basic assumptions

▷ X is the lifetime of an item at usual condition follows the TL-IK distribution.
▷ The failure times Yij ; i = 1, 2; j = 1, 2, . . . , ni are independent and

identically distributed (i.i.d) random variables
▷ Two stress levels z1 and z2 (usual and high) are used.
▷ The total lifetime of test items denoted by Y passes through two stages, which

are the usual and accelerated conditions. Then, the lifetime of an item under
SS-PALT is

Y =

{
X if X ≤ y1n1

y1n1
+ β−1 (X − y1n1

) if X > y1n1

, (6)
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where, y1n1
is the lifetime of the failure item order n1

th , which is the latest
failure under usual condition, and X denotes the lifetime under the stress level
z1.

▷ For any level of stress, the lifetime of test unit follows TL-IK distribution.

Test procedure

1. Suppose that n test units are initially placed on normal stress z1 and run until
time y1n1

when exactly n1 failures are observed while testing at the stress level
z1. If the number of failures reach n1 items which is pre-specified the test is
terminated, where n1 = π1n and π1 is a proportion of total test items put on
test under usual condition that is pre-specified. 0 < π1 < 1.

2. For items do not fail at usual use condition (n−n1) accelerated use condition and
the (n−n1) units are put on high stress z2 and run until time y2n2

when exactly
n2 failures are observed. Where n2 = π2n and π2 is a proportion of total test
items put on test under accelerated condition that is pre-specified. 0 < π2 < 1
and 0 < π1 + π2 < 1. The remaining nc = n− n1 − n2 units are then censored.

In this case, if the item has not failed by some pre-specified number of failures, the
test condition is switched to a higher level of stress and it is continued until another
specified number of failures occur or the observations is censored. The effect of this
switch is to multiply the remaining lifetime of the item by the inverse of an acceleration
factor β, where Y = β−1X , β is the acceleration factor which is the ratio of mean life
at usual condition to that at accelerated condition and β > 1. Thus, the total lifetime
of a test item, denoted by Y , passes through two stages, the first stage is the usual
use condition and the second stage is the accelerated use condition, respectively. [See
Ismail and Aly (2009) and El-Dessouky (2017)].

Applying simple SS-PALT under Type II censoring, then the pdf of total lifetime
Y of an item is given by:

Y =

{
f1 (y;ϑ) if y ≤ y1n1

f2 (y; Φ) if y > y1n1

, (7)

where f1 (y) is given in (7) and has TL-IK distribution with the pdf

f1 (y) = 2abθ(1 + y1j)
−(a+1)[φ1(a)]

θb−1
{
1− [φ1(a)]

b
}{

2− [φ1(a)]
b
}θ−1

,

y ≤ y1n1
; (ϑ > 0) ,

(8)

f2 (y) in (7) is obtained by the transformation-variable technique using f1 (y) and the
model is given by (3), with the pdf

f2 (y; Φ) = 2abθβ(D)−(a+1)[φ1(aβ)]
θb−1

[
1− (φ1(aβ))

b
] [

2− (φ1(aβ))
b
]θ−1

,

y > y1n1
; (ϑ > 0) ; β > 1,

(9)

where

{
Φ = (a, b, θ, β)′, φ1 (a) = 1− (1 + y1j)

−a, φ1 (aβ) = 1− (D)−a,
D = 1 + β (y2j − y1n1) + y1n1,

(10)
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the cdf, rf and hrf of the pdf, f2 (y; Φ) for an item tested at acceleration conditions
are given respectively, by

F (y; Φ) = [φc(aβ)]
θb

[
2− (φc(aβ))

b
]θ
, y > y1n1

; (ϑ > 0) ; β > 1, (11)

R (y0; Φ) = 1− [φc(aβ)]
θb

[
2− (φc(aβ))

b
]θ
, y > y1n1

; (ϑ > 0) ; β > 1, (12)

and

h (y0; Φ) =
f2 (y0; Φ)

R (y0; Φ)
=

2abθβ(D)−(a+1)[φ1(aβ)]
θb−1

[
1− (φ1(aβ))

b
] [

2− (φ1(aβ))
b
]θ−1

1− [φc(aβ)]
θb

[
2− (φc(aβ))

b
]θ ,

y > y1n1
; (ϑ > 0) ; β > 1,

(13)

φc (aβ) = 1− (D1)
−a, D1 = 1 + β (y2n2 − y1n1) + y1n1. (14)

The observed values of the total lifetime Y are given by

y(1) ≤ y(2) ≤ · · · ≤ y(n1) ≤ y(n1+1) ≤ · · · ≤ y(n1+n2−1) ≤ yr,

where yr is the lifetime of the (n1+n2)th unit of the last failure unit in the experiment.

3. Maximum Likelihood Estimation

The ML estimation for the unknown parameters and the acceleration factor of the TL-
IK distribution for SS-PALT under Type II censored data are discussed in Subsection
3.1. In Subsection 3.2, Cls for the parameters and the acceleration factor of the TL-IK
distribution for SS-PALT under Type II censored data are obtained.

The likelihood function (LF) for the SS-PALT based on Type II censoring in its
general form and nc censored data is

L
(
Φ; y

)
∝

n1∏
j=1

abθ(1 + y1j)
−(a+1)[φ1(a)]

θb−1
{
1− [φ1(a)]

b
}{

2− [φ1(a)]
b
}θ−1

×
n2∏
j=1

abθβ(D)−(a+1)[φ1(aβ)]
θb−1

{
1− [φ1(aβ)]

b
}{

2− [φ1(aβ)]
b
}θ−1

×
nc∏
j=1

{
1− [φc(aβ)]

θb
[
2− (φc(aβ))

b
]θ}

,

(15)

where φ1 (a) , φ1 (aβ) , D, φc(aβ) and D1are given by (10) and (14) respectively.

5



6	 Journal of Econometrics and Statistics
Asian Journal of Statistical Sciences AL-Dayian et al.

3.1. Point estimation

The ML estimators of a, b, θ and β are obtained by maximizing the natural logarithm
of (15), denoted by ℓ which can be written in the form:

ℓ ≡ lnL
�
Φ; y


∝ nπ1ln (a) + nπ1ln (b) + nπ1ln (θ) − (a+ 1)

n1
j=1

ln (1 + y1j)

+ (θb− 1)

n1
j=1

ln [φ1 (a)] +

n1
j=1

ln

1− [φ1(a)]

b

+ (θ − 1)

n1
j=1

ln

2− [φ1(a)]

b


+ nπ2ln (a) + nπ2ln (b) + nπ2ln (θ) + nπ2ln (β)− (a+ 1)

n2
j=1

lnD + (θb− 1)

×
n2
j=1

lnφ1 (aβ) +

n2
j=1

ln

1− [φ1(aβ)]

b


+ (θ − 1)

n2
j=1

ln

2− [φ1(aβ)]

b


+ ncln


1− [φc(aβ)]

θb

2− φc(aβ)

b
θ


.

(16)

The partial derivatives of the logarithm of the LF with respect to a, b, θ and β are
given below:

∂ℓ

∂a
=

n(π1 + π2)

a
−

n1
j=1

ln (1 + y1j) + (θb− 1)

n1
j=1

(1 + y1j)
−a

ln (1 + y1j)

φ1 (a)

−
n1
j=1

b(φ1 (a))
b−1

(1 + y1j)
−a

ln (1 + y1j)
1− [φ1(a)]

b
 − (θ − 1)

n1
j=1

b(φ1 (a))
b−1

(1 + y1j)
−a

ln (1 + y1j)
2− [φ1(a)]

b


−
n2
j=1

lnD + (θb− 1)

n2
j=1

(D)
−a

ln (D)

φ1 (aβ)
−

n2
j=1

b(φ1 (aβ))
b−1

(D)
−a

ln (D)
1− [φ1(aβ)]

b
 − (θ − 1)

×
n2
j=1

b(φ1 (aβ))
b−1

(D)
−a

ln (D)
2− [φ1(aβ)]

b


− nc



θb (D1)

−a
ln (D1) {(2− [φc(aβ)]

b
)
θ
[φc(aβ)]

θb−1 − [φc(aβ)]
b(θ+1)−1


2− [φc(aβ)]

b
θ−1

}

1− [φc(aβ)]

θb

2− [φc(aβ)]

b
θ




 ,

(17)
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∂ℓ

∂b
=

n(π1 + π2)

b
+ θ

n1
j=1

lnφ1 (a) −
n1
j=1

(φ1 (a))
b
ln (φ1 (a))

1− [φ1(a)]
b
 − (θ − 1)

n1
j=1

(φ1 (a))
b
ln (φ1 (a))

2− [φ1(a)]
b


+ θ

n2
j=1

lnφ1 (aβ) −
n2
j=1

(φ1 (aβ))
b
ln (φ1 (aβ))

1− [φ1(aβ)]
b
 − (θ − 1)

n2
j=1

(φ1 (aβ))
b
ln (φ1 (aβ))

2− [φ1(aβ)]
b


− nc





2− [φc(aβ)]

b
θ

θ [φc(aβ)]
θb
ln (φc (aβ)) − [φc(aβ)]

b(θ+1)
θ

2− [φc(aβ)]

b
θ−1

ln [φc(aβ)]
1− [φc(aβ)]

θb

2− [φc(aβ)]

b
θ




 ,

(18)

∂ℓ

∂θ
=

n(π1 + π2)

θ
+ b

n1
j=1

lnφ1 (a) +

n1
j=1


2− [φ1(a)]

b


+ b

n2
j=1

lnφ1 (aβ) +

n2
j=1


2− [φ1(aβ)]

b


− nc





2− [φc(aβ)]

b
θ

b [φc(aβ)]
θb
ln (φc (aβ)) + [φc(aβ)]

θb

2− [φc(aβ)]

b
θ

ln

2− [φc(aβ)]

b



1− [φc(aβ)]

θb

2− [φc(aβ)]

b
θ




 ,

(19)

and the first partial derivative of the acceleration factor is

∂ℓ

∂β
=

nπ2

β
− (a+ 1)

n2
j=1

(y2j − y1n1)

D
+ (θb− 1)

n2
j=1

a (y2j − y1n1) [φ1 (aβ)]
b−1

(D)
−(a+1)

φ1 (aβ)

−
n2
j=1

ab (y2j − y1n1) [φ1 (aβ)]
b−1

(D)
−(a+1)


1− [φ1(aβ)]

b
 − (θ − 1)

n2
j=1

ab (y2j − y1n1) [φ1 (aβ)]
b−1

(D)
−(a+1)


2− [φ1(aβ)]

b


− nc



abθ (y2n2

− y1n1
) (D1)

−(a+1){

2− [φc(aβ)]

b
θ

[φc(aβ)]
θb−1 − [φc(aβ)]

b(θ+1)−1 
2− [φc(aβ)]

b
θ−1

}

1− [φc(aβ)]

θb

2− [φc(aβ)]

b
θ




 ,

(20)

where φ1 (a) , φ1 (aβ) , D, φc(aβ) and D1are given by (10) and (14) respectively.
The ML estimators are obtained by setting (17)-(20) to zeros. The system of the
non-linear equations can be solved numerically, to evaluate the ML estimates of
â, b̂, θ and β.

3.2. Asymptotic Confidence intervals

The AVCM of the estimators a, b, θ and β are derived depending on the inverse asymp-
totic Fisher information matrix (AFIM) using the second partial derivatives of the
logarithm of the LF.
The AFIM can be written as follows:
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Ĩ ≈ −
[

∂2l

∂Φi∂Φj

]
, i, j = 1, 2, 3, 4, (21)

where Φ1 = a,Φ2 = b, Φ3 = θ and Φ4 = β.
For large sample size, the ML estimators under regularity conditions are consistent and
asymptotically unbiased as well as asymptotically normally distributed. Therefore, the
ACIs for the parameters; Φ, can be obtained by

P
[
−Z < Φ̂iML−Φi

σΦ̂iML

< Z
]
= 1−τ, where Z is the 100

(
1− τ

2

)
th standard normal per-

centile. The two-sided 100(1 − τ)% ACIs are

LΦi
=Φ̂iML−Z τ

2
σ̂Φ̂iML

, and UΦi
=Φ̂iML+Z τ

2
σ̂Φ̂iML

, (22)

where σ̂Φ̂iML
is the standard deviation and Φ̂iML is â, b̂, θ̂, or β̂, respectively.

4. Numerical Illustration

This section aims to investigate the precision of the theoretical results of estimation
based on simulated and real data.

4.1. Simulation algorithm

In this subsection, a simulation study is conducted to illustrate the performance of the
presented ML estimates based on generated data from the TL-IK (a, b, θ) distribution
considering the SS-PALT. The ML averages of the parameters, based on Type II cen-
soring are computed. Moreover, the ACIs of the parameters are calculated. Simulation
study is performed using Mathematica 11 for illustrating the obtained results.
The steps of the simulation procedure based on Type II censored data are as follows:
Step 1: For given values of ϑ, random samples of size n are generated from the TL-IK
(a, b, θ) distribution.

• The transformation between uniform distribution and TL-IK distribution is ob-
tained as follows:

x =

[(
1− (u)

1

b

)− 1

a − 1

](
1−

√
1− (u)

1

θ

)
, 0 < u < 1,

where u1, u2, . . . , un are random samples from uniform (0,1).
Step 2: The experiment is done under Type II censoring and r is the level of censoring
and it can be determined as follows: nc = n−n1−n2, which means that the experiment
terminates when reaching the first number of failures. Each of the n test items are
first run at usual condition, if the number of failures reach n1 = π1n items which is
pre-specified, then the test is terminated, where π1 = 20% is a proportion of total test
items put on test under usual condition. Next the survival items (80% n) are put on
accelerated usual condition and run until the number of failures reach n2 items, then
the test is terminated, where n2 = π2n and π2 = 20% is a proportion of total test
items put on test under accelerated condition that is pre-specified.
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Step 3: For each sample and for different combinations of the population parameter
values, the distribution parameters and the acceleration factor are estimated in SS-
PALT under Type II censored samples. Newton Raphson technique is applied for
solving the nonlinear equations (17)-(20) to get the estimates of a, b, θ, and β.

• Repeat the preceding steps N times, where N denotes a predetermined number
of simulated samples and N = 2000 is the number of repetitions.

Step 4: Evaluating the performance of the estimates is considered through some mea-
surements of accuracy. In order to study the precision and variation of the estimates,
it is convenient to use the average and the estimated risk (ER), where

Φ̂i =
∑N

j=1 Φ̂
j
i

N , Φi = a, b , θ and β and ER=
∑N

j=1 (estimate−true value)2

N .
Step 5: The two-sided asymptotic confidence limits with confidence levels of the
acceleration factor and the three parameters are constructed using (22).

• Simulation results of the ML averages of the estimates are displayed in Tables
1-3, where the samples of size (n=30, 60, 100), are used. For each sample size,
the chosen population parameters values are (Case 1, a = 1.6, b = 1.5, θ =
1.2, β = 1.4), (Case 2, a = 1.6, b = 1.5, θ = 1.2, β = 2.4) and (Case 3,
a = 1.6, b = 1.5, θ = 1.2, β = 3.4).

• Tables 1-3 present the ML averages, ERs and ACIs of the unknown parameters
and the acceleration factor based on Type II censoring in Case 1, Case 2 and
Case 3, respectively.

4.2. Applications

This subsection demonstrates how the proposed method can be used in practice
through two real lifetime data sets. The TL-IK (a, b, θ) distribution is fitted to the
two real data using Kolmogorov-Smirnov goodness of fit test via the R programming
language.
Application 1
The data was given by Murthy et al. (2004), it refers to the time between failures for
a repairable item: 1.43, 0.11, 0.71, 0.77, 2.63, 1.49, 3.46, 2.46, 0.59, 0.74, 1.23, 0.94,
4.36, 0.40, 1.74, 4.73, 2.23, 0.45, 0.70, 1.06, 1.46, 0.30, 1.82, 2.37, 0.63, 1.23, 1.24, 1.97,
1.86 and 1.17.
Application 2
The second application was provided by Dumonceaux and Antle (1973), where the
data represents the maximum flood level (in millions of cubic feet per second) for the
Susquehanna River at Harrisburg, Pennsylvania. Each number is the maximum flood
level for a four-year period, the first, 0.654, being for the period 1890-1893, and the
last, 0.265, being for the period 1966-1969. The data is
0.654, 0.613, 0.315, 0.449, 0.297, 0.402, 0.379, 0.423, 0.379, 0.3235 0.269, 0.740, 0.418,
0.412 0.494, 0.416, 0.338, 0.392, 0.484, 0.265.
The Kolmogorov–Smirnov goodness of fit test is applied on the two applications to
check the validity of the fitted model. The p-values are given, respectively, by 0.5860
and 0.6465. The p-value given in each case showed that the model fits the data very
well.

• Table 4 displays the ML estimates and standard errors (SE) of the unknown
parameters and the acceleration factor, for the real data sets based on Type II
censoring.
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4.3. Concluding remarks

a) From Tables 1-3, one can observe that the ML averages are very close to the
population parameter values as the sample size increases. Also, the ERs decrease
when the sample size increases. This implies that the estimates are consistent
and approach the true parameter values as the sample size increases.

b) The lengths of the ACIs of the parameters become narrower as the sample size
increases.

c) Table 1 indicates that when the proportion π of the sample items allocated to
the accelerated conditions decreases, the accuracy of the ERs gets better.

d) Also, from Tables 1-3 one can notice that, in most cases as the acceleration factor
increases the ERs of (a, b, θ) decreases.

e) From Table 4, when the proportion π of the sample items allocated to the ac-
celerated conditions decreases, the SE performs better.

5. General Conclusion

For products having high reliability, the test of product life under usual conditions
often requires a long period of time. Therefore, ALT or PALT is used to facilitate
estimating the reliability of the unit in a short period of time. In ALT test items
are run only at accelerated conditions but in some cases, such relationship cannot be
known or assumed. Thus, PALT is often used in such cases, where the test items are
run at both usual and accelerated conditions. This paper deals with the SS-PALT
under Type II censoring. It is assumed that the lifetime of test units has the TL-IK
distribution. The ML estimators of the acceleration factor and the parameters are
derived. From the results, one can conclude that, in most cases as the acceleration
factor increases, the ERs of (a, b, θ) decrease. As the sample size increases the ERs
and the length of the ACIs for the parameters and the acceleration factor decrease.
This implies that the ML estimators of the parameters and the acceleration factor are
asymptotically normally distributed and consistent.
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Appendix
Table 1: ML averages, estimated risks and 95% ACIs for the parameters a, b, θ, β based on

Type II censoring,
(N=2000. π1 = 20%, π2 = 20%, r = 60%, π1 = 20%, π2 = 50%, r = 30%, π1 = 20%, π2 = 70%, r = 10%)

(Case 1, a = 1.6, b = 1.5, θ = 1.2, β = 1.4)

n π Parameters Averages ERs UL LL Length
a 1.43995 0.00803 1.57039 1.30951 0.26088

π1 = 20% b 1.33229 0.08012 1.51243 1.15215 0.36028
θ 11.04669 0.07236 1.22408 0.86930 0.35478

π2 = 20% β 1.38320 0.01334 1.60717 1.15922 0.44795
a 1.29806 0.07708 1.67148 0.92464 0.74684

30 π1 = 20% b 1.18354 0.22381 1.62342 0.74366 0.87976
θ 0.90827 0.19858 1.32465 0.49189 0.83276

π2 = 50% β 1.23379 0.03650 1.4185 1.04911 0.36937
a 1.21120 0.12749 1.62272 1.62272 0.82304

π1 = 20% b 1.03732 0.39003 1.56844 0.50621 1.06223
θ 0.77161 0.34442 1.27217 0.27105 1.00112

π2 = 70% β 1.15834 0.07537 1.41366 0.90303 0.51064
a 1.45043 0.00445 1.53786 1.36299 0.17486

π1 = 20% b 1.34831 0.06639 1.45635 1.24027 0.21607
θ 1.06257 0.05913 1.16555 0.95959 0.20596

π2 = 20% β 1.37372 0.003112 1.47018 1.27727 0.19291
a 1.31846 0.05898 1.63467 1.00225 0.63242

60 π1 = 20% b 1.21644 0.18014 1.57258 0.86029 0.71229
θ 0.94056 0.15828 1.27485 0.60627 0.66858

π2 = 50% β 1.24022 0.02985 1.36898 1.11146 0.25752
a 1.20272 0.12621 1.58393 0.82150 0.76243

π1 = 20% b 1.04356 0.36857 1.51942 0.56769 0.95172
θ 0.77941 0.32288 1.22578 0.33304 0.89275

π2 = 70% β 1.15543 0.07016 1.35475 0.95611 0.39863
a 1.45890 0.00264 1.51946 1.28836 0.12112

π1 = 20% b 1.35843 0.05964 1.42849 1.39833 0.14014
θ 1.07216 0.05304 1.13806 1.00627 0.13179

π2 = 20% β 1.36967 0.00182 1.42859 1.31075 0.11784
a 1.33053 0.04269 1.56226 1.09880 0.46346

π1 = 20% b 1.23349 0.15133 1.48903 0.97795 0.51109
100 θ 0.95722 0.13232 1.19581 0.71862 0.47719

π2 = 50% β 1.24221 0.02735 1.33936 1.14506 0.19429
a 1.20834 0.11544 1.54989 0.86678 0.68311

π1 = 20% b 1.05523 0.34352 1.47902 0.63145 0.84758
θ 0.79128 0.29965 1.18742 0.39513 0.79229

π2 = 70% β 1.15422 0.06922 1.33815 0.97028 0.36788

12



Maximum Likelhood Estimation Based on Step Stress-Partially Accelerated Life...	 13
Asian Journal of Statistical Sciences AL-Dayian et al.

Table 2: ML averages, estimated risks and 95% ACIs for the parameters a, b, θ, β based on
Type II censoring, (N=2000, π1 = 20%, π2 = 20%, r = 60%)

(Case 2, a = 1.6, b = 1.5, θ = 1.2, β = 2.4)

n π Parameters Averages ERs UL LL Length
a 1.44052 0.00852 1.57881 1.30223 0.27658

π1 = 20% b 1.33315 0.08050 1.52206 1.14423 0.37784
30 θ 1.04771 0.07242 1.23118 0.86423 0.36695

π2 = 20% β 2.32464 0.02389 2.58913 2.06015 0.52898
a 1.45550 0.00347 1.53113 1.37987 0.15126

π1 = 20% b 1.35441 0.06259 1.44805 1.26076 0.18729
60 θ 1.06837 0.05572 1.15745 0.97929 0.17816

π2 = 20% β 2.31195 0.01093 2.42250 2.20140 0.22110
a 1.46341 0.00206 1.51606 1.41077 0.10529

π1 = 20% b 1.36363 0.05686 1.42513 1.30213 0.12299
100 θ 1.07702 0.05059 1.13490 1.01914 0.11576

π2 = 20% β 2.31077 0.00945 2.38637 2.23516 0.15121

Table 3: ML averages, estimated risks and 95% ACIs for the parameters a, b, θ, β based on
Type II censoring, (N=2000, π1 = 20%, π2 = 20%, r = 60%)

(Case 3, a = 1.6, b = 1.5, θ = 1.2, β = 3.4)

n π Parameters Averages ERs UL LL Length
a 1.44488 0.00739 1.57430 1.31545 0.25885

π1 = 20% b 1.33675 0.07798 1.51940 1.15410 0.36529
30 θ 1.05116 0.07022 1.22969 0.87264 0.35705

π2 = 20% β 3.25770 0.04519 3.56725 2.94814 0.61912
a 1.45893 0.00307 1.53194 1.38592 0.14602

π1 = 20% b 1.35705 0.06119 1.44844 1.26566 0.18278
60 θ 1.07081 0.05450 1.15785 0.98377 0.17408

π2 = 20% β 3.25079 0.02697 3.38527 3.11632 0.26895
a 1.46698 0.00164 1.51277 1.42119 0.09158

π1 = 20% b 1.36689 0.05507 1.41991 1.31388 0.10603
100 θ 1.08008 0.04901 1.12983 1.03032 0.09951

π2 = 20% β 3.25003 0.02423 3.33172 3.16834 0.16338
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Table 4: ML estimates for the parameters and standard errors for
the real data sets based on Type II censoring (r=60% and r=10%)

Application I
π n Parameters Estimates SE

a 1.39967 0.00231
π1 = 20% b 1.49753 0.02385

θ 2.49801 1.96433E-7
π2 = 20% β 1.59843 0.01689

30
a 1.29967 0.14725

π1 = 20% b 1.39753 0.09810
θ 2.29801 0.00325

π2 = 70% β 1.39843 0.06172
Application II

π n Parameters Estimates SE
a 0.79922 0.15080

π1 = 20% b 1.49874 0.30331
θ 1.10049 0.17775

π2 = 20% β 2.21192 0.00013
20

a 0.99922 0.39203
π1 = 20% b 1.59874 0.83178

θ 1.30049 0.52881
π2 = 70% β 2.30092 0.51151
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